

Revista Venezolana de Computación
ISSN: 2244-7040

http://www.svc.net.ve/revecom

Vol. 5, No. 1, pp. 20-28, Junio 2018

Fecha recepción: 07/03/2018, Fecha aceptación: 02/08/2018

de Computación

Integrating a Unified Communications System
with Social Networks

Eric Gamess1, Francisco Mora2, Diego Oliveros2, Dedaniel Urribarri2
egamess@jsu.edu, moraf93@gmail.com, oliverosdiego17@gmail.com, dedanielu@gmail.com

1 MCIS Department, Jacksonville State University, Jacksonville, AL, USA
2 School of Computing, Central University of Venezuela, Caracas, Venezuela

Abstract: The increasing number of employees and clients, that are associated with each organization, has motivated them
to extend their technological platform with the implementation of unified communications servers, with the goal of
significantly improve their communication processes. On the one hand, people usually look for easy and fast methods for
their communications. On the other hand, social networks have experienced an exponential boom in the last few years.
Hence, in this research work, we propose a solution that allows the integration of a unified communications system with a
social network. For the unified communications system, we choose Elastix, since it has become very popular and many
companies worldwide have already based they communications system on it, whereas Twitter has been our selection for the
social network, since it is commonly used for the exchange of short and accurate information among people. Our proposal
is focused on the customer services offered by organizations to people, using Twitter.

Keywords: Customer Services; Unified Communications Systems; Elastix; Social Networks; Twitter; Integration.

I. INTRODUCTION

Nowadays, communication technologies are becoming so
important that they form part of the strategic plan of
organizations. In the actual globalized world, people take an
important part of their workday to see emails, make calls, use
instant messaging, and even participate in video-conferences to
communicate with collaborators or customers. Therefore,
communications systems have a great challenge ahead, which
consists of offering the required tools to organizations with the
aim of improving their way of doing business.

IP telephony is a technology that is implemented on top of the
existing data networks. This technology has been in the market
since the late nineties, but has not been widespread until
recently, thanks to the improvement and standardization of the
systems that provide voice quality control and the
universalization of the Internet service. IP telephony usually
brings an efficient and flexible environment in an organization
for communications, and allows remote locations to be
smoothly integrated into the headquarter.

On the other hand, social networks allow a fast, effective and
simple interaction among a large number of people. The focus
of the organizations in the usage of social networks cannot be
limited to the advertisement of products and promotions, but
must also point to the resolution of doubts and problems of
customers, and to maintain this direct contact through the
Internet.

In this work, we propose a solution to integrate or extend the
functionalities of unified communications servers with social
networks.

The rest of this document is organized as follows. In Section II,
we present the problems faced by organizations with their
communications platforms. In Section III, we introduce the
different elements that were considered as possible part of a
software solution. Related works are reviewed in Section IV. In
Section V, we present our proposed software solution for the
integration of unified communications systems with a social
network. Section VI describes the scenarios used and the tests
performed to validate our solution, while the results are
discussed in Section VII. Finally, Section VIII concludes the
paper and gives directions for future works.

II. PROBLEMS FACED BY ORGANIZATIONS WITH THEIR

COMMUNICATIONS SYSTEMS

As time goes by, the growing limitations of the old telephone
system can be evidenced. For example, the conventional
telephone system presents serious problems of scalability,
especially when it comes to add new telephone lines. In
addition, it also has low flexibility when the users want to
develop and implement specific applications that meet the
needs of a particular company. For these reasons, worldwide,
we can observe that entities are migrating their telephone
systems to VoIP.

20

In the last few years, usage of technology has increased
significantly in all areas; in particular information technologies
are now present in all processes carried out in our society. For
example, social networks are now ubiquitous, leading most
people to change both, their personal and professional
behaviors.

However, even though social networks are becoming
widespread, they are still rare in unified communications
services, particularly in the following areas: process
management, customer service, marketing, and advertising.
These areas can be significantly supported and improved by
integrating unified communications services with social
networks. Currently, the integration between state-of-the-art
telephone systems and social networks are practically non-
existent; therefore, there is no work and substantial evidence of
the benefits that social networks would offer to unified
communications systems, by expanding the services currently
available.

III. STUDY OF THE POSSIBLE TECHNOLOGIES

During the last decades, the experience offered to customers by
call centers has evolved. This is due to the fact that the
communication with the clients is not anymore only focused on
incoming and outgoing voice calls, but now also integrates data
applications like e-mail, web-based chat, instant messaging,
and the capability to share pictures and web pages sent to and
from the customers. Hence, the term “Call Center” is now
becoming obsolete, and the one used nowadays is “Contact
Center,” with the encompassment of all communication
channels with clients.

In our society, that has been flooded by social networks, it is
logical to think that these channels of communications can be
used not only for the interactions between individuals, but also
to communicate customers with large companies and
organizations. Through social networks, a user can request
information about a product, generate a claim, express an
opinion, or require services. In this research work, we propose
the integration of two important technologies: (1) Elastix as the
unified communications server and (2) Twitter for the social
network.

A. Elastix

Elastix [1][2][3][4] is an open source software platform that
aims to incorporate in a single solution all media and
communication alternatives available in the business world [5].
Its functionality is based on the usage of four very important
software programs: (1) Asterisk [6][7][8][9], (2) HylaFAX, (3)
Openfire [10], and (4) Postfix [11][12][13]. These software
provide functions of PBX (Private Branch Exchange), fax,
instant messaging, and email, respectively.

1) Architecture: Elastix is not only in charge of providing
telephony, but it also integrates other means of
communications to make the work environment efficient and
productive. By having an integration of different
communication systems, an enhanced productivity is achieved
in different aspects such as saving time and paper, facilitating
the access to shared information, among others. Figure 1
shows the different layers of communications present in the
general architecture of Elastix.

Figure 1: Architecture of Elastix

2) Characteristics: Elastix has multiple features and
functionalities related to the services it provides: IP telephony,
fax server, mail server, conferences, instant messaging, among
others. These characteristics are provided by the software on
which Elastix is based, mentioned above. The latest versions
of Elastix allow third parties to develop software modules to
improve the system, or to customize it for their own use.
Below, we describe the technologies that help developing
additional features to integrate them into Elastix.

Elastix Call Center Protocol (ECCP)

It is a text protocol based on XML and specialized for call
centers. Its objective is to provide client applications with a
single comprehensive protocol as an alternative to other
existing protocols such as web services or AMI (Asterisk
Manager Interface).

One of the disadvantages of this protocol was its performance,
since initially, the only scheme available was based on the
concept of “polling,” which generated numerous queries to the
server and an unnecessary waste of Elastix server resources.
The new version of the protocol supports asynchronous events
for communications, eliminating the need for “polling” and
offering the possibility of a scalable solution.

This protocol provides a communications API (Application
Programming Interface) available through a TCP port to which
client applications can connect in order to communicate with
the predictive dialer of Elastix, allowing third parties to
develop their own agent consoles or other types of client
applications.

Asterisk Gateway Interface (AGI)

This interface [14][15] is mainly used to add new features to
Asterisk through the use of different programming languages,
such as Perl, PHP, C, Pascal, among others. Its function is to
connect the Asterisk dialplan with an external program that
seeks to manipulate a channel in the dialplan. The interface is
synchronous, i.e., the action taken on a channel by an AGI
block does not return until the action is completed.

21

Revista Venezolana de Computación - ReVeCom (ISSN: 2244-7040) - SVC
Vol. 5, No. 1, Junio 2018

Asterisk Manager Interface (AMI)

AMI provides a mechanism to control where the channels are
executed in the dialplan. Unlike AGI, AMI is an asynchronous
interface, by events. For the most part, AMI does not offer
mechanisms to control the channels’ execution; rather it
provides information about the state of the channels and where
the channels are running.

Both interfaces (AGI and AMI) are powerful and open a wide
range of integration possibilities. AGI enables the execution of
the remote dialplan, which allows developers to control the
channels in Asterisk using PHP, Python, Java, and other
languages. With AMI, the Asterisk status can be displayed on
the screen, calls can be initiated, and controlled channels can
be located. By using both APIs together, it is possible to create
complex applications using Asterisk as the engine for the
development.

Asterisk RESTful Interface (ARI)

ARI allows developers to build custom communications
applications. ARI exposes primitives of Asterisk that are
normally reserved to C modules (channels, bridges, endpoints,
communications media, etc.) through an intuitive REST
interface. ARI transmits the state of the objects that are
controlled by the users, through JSON [16][17] (JavaScript
Object Notation) events over a WebSocket [18][19].

By giving control of the fundamental building blocks in
Asterisk to all developers, regardless of the programming
language, Asterisk is becoming a communications engine, with
the business logic of how things should be communicated,
delegated to the application using Asterisk.

ARI is not a substitute for AGI or AMI. Rather, it is a
complementary API:

 AGI allows users to control the execution of dialplan
applications on remote processes.

 AMI allows users to manage and control calls at a high
level.

 ARI allows the replacement of dialplan applications with
user-customized communications applications.

B. Social Networks

Social networks have revolutionized the concepts of personal
relationships and entertainment. They are aimed to maintain
contact with people, create new links, interchange information
and opinions, and furthermore, they can be used in many other
areas, such as finding job opportunities.

Every day, millions of people around the world use social
networks such as Facebook and Twitter to express their
opinions. This represents a valuable opportunity for
organizations to know more about their actual or potential
clients, in addition of reaching a greater number of people, that
could not be done in a traditional way.

1) Principal Use of Social Networks: Initially, social
networks were intended to connect people, with a focus on
personal communications. However, over the years, they
became a place where organizations can interact with
customers and propose their products and services. According

to the classification carried out by Del Moral [20], the four
main usages of social networks are:

 Maintenance of friendships: keeping in touch with friends,
colleagues or ex-partners of work, summer acquaintances,
etc. In the past, before social networks, many of these
relationships will not last in the long run, due to the
difficulty and cost of communications.

 New friendships: while social networks facilitate the
maintenance of contact between people who know each
other, they also promote new contacts between people. For
example, in most of these social networks, users can
define friends. The list of friends is generally visible to
other contacts and friends, who can in turn interact and
meet each other. Thus, the friend of a friend can become a
contact and later a friend of a third party. This converges
on the “six degrees of separation” theory from Frigyes
Karinthy, which suggested that we would not need to
contact more than six people to find someone, following
their networks of friends and acquaintances. In other
words, any two people on the planet are linked, without
knowing it, by a chain of friends or acquaintances, with a
length of at most six people.

 Entertainment: although social networks serve to interact
and increase relationships, there is also a profile of users
who use them as an entertainment portal. These users
explore the updates of the state of other users, that is, they
inform themselves about other people’s lives, they
discover the new colleagues of former classmates, etc. It is
a way of observing what is happening without being seen.

 Group of related people: it is one of the main usages of
social networks. People that share the same interest or
from the same professional sector can group themselves to
discuss their common interest. Furthermore, some
organizations create private social networks to streamline
procedures, communications, conferences, or reports.

2) Usage Focused to Organizations: For organizations, it
is important not to merely used social networks as an
advertising platform. They must be integrated to promote
socialization, the exchange of experiences, etc. In fact, using
social networks mainly as a sales platform can generate a
negative perception of the brand, given the social, rather than
commercial, expectation that the term “social network”
implies.

There are many benefits that a correct strategy for the usage of
social networks can generate, and these will depend not only
on the strategy as such, but also on other external factors such
as the sector of the organization, the commercial activity, the
size of the organization, the target community, and last but not
least, the level of commitment of the organization with the
implementation of a digital marketing plan.

3) APIs for Social Networks: An API (Application
Programming Interface) is a set of functions/methods that
provide the programmer with an interface of communications
with a specific system, allowing him/her to develop new
custom functionalities. In our days, social networks have
information from users that is quite useful to promote products

22

E. Gamess, F. Mora, D. Oliveros, D. Urribarri

and services. Currently, many applications are being designed
in such a way that they have the ability to establish a
connection with the API of these networks, and obtain
relevant data from the users, in order to customize the
information to be shown to them.

To establish such a connection, a process of authentication and
permission authorization must be followed, through the usage
of the “OAuth” protocol [21][22][23] (Open Authentication).
This protocol allows a user to grant access to his/her data to a
third party, without having to provide his/her username and
password. In this process, when the user grants permission to
the application, the social network provides a “token” that must
be saved by the application in order to make requests on behalf
of the user, such as reading personal information, interests,
contacts, or publishing new information.

The interaction between social networks and the application is
made through requests, sent with the HTTPS (Hypertext
Transfer Protocol Secure) protocol [24]. According to the
action to realize, requests of type GET, POST, PUT or
DELETE can be used. These requests are analogous to the
actions of reading, writing, editing or deleting, respectively. All
requests must include the access “token” through which the
request is validated, accepting or rejecting according to the
permissions granted to the user. It is recommended to send the
access token within the header of the requests, although it can
also be sent as a parameter in the URL, since it is protected by
the HTTPS protocol.

Even though all social networks have similar APIs, they have
different restrictions for the management of data and a different
usage in society.

Twitter

It is one of the social networks that has done a lot of efforts to
promote its API. In fact, the statistics indicate that more than
half of the accesses to their tweets are made from external
applications, such as TweetDeck [25] or Seesmic. There are
thousands of products developed from the API of Twitter.
Some of them, that require a very high volume of information,
pay for it, resulting in a new business model.

Twitter is one of the social networks that does not have many
privacy restrictions, that is, the vast majority of users have a
public profile, and therefore also are their “tweets.” For this
reason, Twitter allows access to all this information through its
API.

One of the restrictions that developers face is the limit of
requests that can be done in a period of time. That is, there are
15-minute intervals where a maximum number of requests can
be made. It is worth mentioning that these limits are per user,
not per application, allowing an independent control on each
user. According to the type of resource that is requested, there
are two main types of restrictions: (1) 15 requests every 15
minutes and (2) 180 requests every 15 minutes. Additionally, it
is not allowed to retrieve historical information, that is, if a
search is executed, it is only possible to obtain information
generated in the previous seven days. In case of exceeding the
maximum number of requests in a period of time, a response
code is obtained which provides information about the
temporarily restricted resource and the waiting time for the
resource to be available again. However, Twitter also offers the

usage of streaming, which allows the acquisition of
information in real time, without restricting the number of
requests for a period of time.

IV. RELATED WORKS

A few works have been done in relation to the integration of
unified communications systems with social networks. In this
section, we describe some of these works.

A. Integrating Elastix with Gtalk

The work carried out by Gaibor [26] consisted of the
integration and configuration of the Gtalk instant messaging
service in Elastix (see Figure 2). The author discovered that the
Asterisk version which comes with Elastix 2.2 brings a
compiled Gtalk support, allowing an easy communication with
the service.

In the configuration process, the file of the XMPP protocol
(formerly known as Jabber) had to be modified to create a user,
by using a Gmail account. Then, a context for the user had to
be made with a file of custom extensions, allowing the
execution of a series of commands when calling the extensions.
Finally, it was added to the dialplan and tests were done to
verify the correct operation of the user.

Figure 2: Call Received from a Google Account

B. Publication in Twitter through ASR

The work done by Smith [27] is about writing a tweet in a
personal Twitter account, through a call to an extension and
commenting the content of the tweet using an ASR (Automatic
Speech Recognition), at no cost. Smith used PHP-AGI, a
library to work with AGI from the PHP programming
language, and wrote some scripts. The author also used a WAV
(Waveform Audio Format) to FLAC [28] (Free Lossless Audio
Codec) converter. WAV is a digital audio format that does not
have data compression, while FLAC allows digital audio to be
compressed without losing information. The conversion was
required, since the solution uses the free ASR service [29] from
Google that only receives FLAC formats. In order to convert
from WAV to FLAC, Smith used the SoX [30] program, a
famous tool to convert, add effects, and other advanced sound
manipulation functions, on audio files, from a terminal.

Finally, Smith had to create and authorize an application in
Twitter, so that the PHP script could work. The application
required read, write, and access permissions to direct messages,
in order to manipulate the account. The most important
information that could be obtained from the application are: the
consumer key, the consumer secret, the access token, and the
access token secret.

23

Revista Venezolana de Computación - ReVeCom (ISSN: 2244-7040) - SVC
Vol. 5, No. 1, Junio 2018

V. INTEGRATING ELASTIX WITH TWITTER

Figure 3 depicts the conceptual design of the proposed
solution, which is divided into two modules distributed in
different physical servers. The elements involved in our
solution are explained next.

Figure 3: The Proposed Architecture to Integrate Social Media to
Elastix

A. Twitter

It is a software component that acts as an intermediary between
the organization and its clients. It receives the requests from
the clients, sorts them, and publishes the associated responses.
The interaction with the API of Twitter is based on having a
Twitter account with permissions for third party apps, so the
application can read and write direct messages. Direct
messages is the tool that we selected to gather the important
data used by the processing module (see Section V.B). Since
the data exchanged can be sensible, we chose them since they
offer an exclusive private bidirectional canal of communication
with the owner of the account (client). In addition, unlike the
tweets, direct messages do not have the limit of 140 characters
in length, allowing the exchange of longer messages.

B. Processing Module

The processing module uses the services of the Twitter API to
obtain and send direct messages to clients. Due to the
asynchronous nature of the flows between Twitter and the
social module (see Section V.C), it was necessary to label the
direct messages with a tag since they can be in one of three
possible states: (1) the direct message was satisfactory
processed in the social module, (2) the direct message is been
reviewed in the social module, and (3) the delivery of the direct
message to the social module has failed.

This module was developed with the Rails framework [31] for
the flexibilities and advantages it offers at the time of
programming. We also used the REST architecture and the
JSON [16][17] (JavaScript Object Notation) format for data
transfer, due to their simplicity, their speed of processing, and
since the Twitter API also manages these technologies. Figure
4 shows the different functionalities that reside in the
processing module for the handling of messages from the
social network.

Figure 4: Processing Module - Elastix Social Media

1) Call to the Twitter API: This component is in charge of
configuring the information of the account associated with
Twitter, to make calls on behalf of the owner of the account.
To do so, it uses a gem of Rails called “Twitter,” and must
obtain from the Twitter application some secret and unique
values: consumer key, consumer secret, access token, and
access token secret.

After the configuration and thanks to the used gem, it is
possible to tweet, send and get direct messages through simple
directives such as:

 create_direct_message(<ID_or_UserName>,<Message>):
send a direct message without limit of characters to a user
by specifying his/her ID (identification number) or
username.

 direct_messages: retrieve all the direct messages of the
configured account.

 update(<tweet>): update the timeline of the account by
sending a new tweet (as previously specified, tweet are
limited to 140 characters).

2) Retrieve Direct Messages and Message Processing:
The function of these two components is to use the Twitter
directives to obtain all direct messages and to perform the
classification of the obtained messages. The classification is
done as (1) complaint, (2) doubt, or (3) compliment, and
messages have a specific structure depending on their
classification.

The messages that are retrieved are stored in a database and the
following labels are kept: waiting, delivered, and finished.
These labels correspond to the receiving process of a message
through the API, its submission to the social module for its
attention, and the effective response of the agent to the user’s
request.

3) Send Direct Messages: It is a web service to be used by
the agent for the submission of the answer to the request with
a direct message to the user.

4) Generate Auto Messages: This component is used for
automatic messages and outgoing campaigns. These messages

API of the
Social Module

Elastix

Agent Console

Consumer

. . .

Direct
Message

Human Agents

Using services of the
Processing Module to

send messages

DB of the Call Center

Twitter
Processing
Module

API of Twitter

Persistence
of messages

Server #2

Server #1

Send
Message

Check
User

Schedule
Call

RabbitMQ

DB_Rabbit

Queue #1

Queue #2

Queue #3

Additional
Queue

Calls to the
Twitter API

Retrieve Direct
Messages

Send Direct
Messages

Generate Auto‐
Messages

PUSH Messages

Agent requesting
to send message

Outgoing
Campaigns

Persistence of
Messages

Processing Module

Twitter

Check Client
Message
Processing

24

E. Gamess, F. Mora, D. Oliveros, D. Urribarri

are classified as “Informative Tweets”, “Outgoing Campaigns
by Tweets,” and “Outgoing Campaigns by Direct Messages”.

C. Social Module

This component is in charge of the operations on the messages
received by the processing module, in addition to providing
support tools for the management of the contact centers in
relation to their link with social networks. Its structure is part
of the ecosystem of the unified communications server, where
it maintains dependencies with the rest of its components. The
“Social Module” in its operative scope maintains the
management of the service queues and the distribution scheme
of messages to the agents, allowing them to support their
administration with the generation of calls, submission and
reception of direct messages, management of outbound
campaigns in social networks, among others. Figure 5 shows
the components involved in the operation of the social module.

Figure 5: Social Module - Elastix Social Media

1) API of the Social Module: Given the approach proposed
for the communication between modules, we implemented an
API with Silex [32], a PHP micro-framework, to get an
intermediary between the processing module and the service
queues handled by the RabbitMQ message broker
[33][34][35], which is responsible for providing the services
required to complete the workflow of each message. In the
following bullet list, two important REST web services are
discussed:
 messages: service obtained through a POST request to

enqueue in RabbitMQ a message previously processed
and parsed in JSON format.

 /user/search: service obtained through a GET request, to
verify the existence of a client within the module of the
call center, by sending two of its identifiers (identification
number and contract number).

2) Service Queues: The service queues managed by the
social module are supported by additional structures to the
existing ones in Asterisk/Elastix, given the peculiarity of the
attributes that are stored in them, that are far from those
handled in the telephony field. That is, they store messages
processed by the processing module that will be consumed by
the available agents. For this, they exploit the benefits of the
RabbitMQ message broker, to make routing, persistency and
handling of the messages that are delivered through the API of
the social module.

Two routers are used to deliver the messages to four different
queue structures that have configurations that enable specific
persistence functionalities and work mode (ACK waiting).
Each of these queues represents a different flow over the
complete system, since each message has specific information,
that is, each one receives specific data depending on the type of
messages in which it was categorized by the processing
module, according to the request generated by the client.

There is a one-to-one correspondence between the type of
message and the routing key that each queue has inside
RabbitMQ, which is an integer between 0 and 3, representing
complaints, doubts by calls, doubts by direct messages, and
compliments, respectively. Likewise, there is an additional
queue managed by an alternate router, which was implemented
for reasons of future expansion and to cover the loss of any
user message that is routed with a different “key route,” than
the one known within the solution.

3) Call Center Module: The Elastix Call Center module is
designed to handle incoming and outgoing call campaigns,
allowing the interaction between agents and telephone service
subscribers. For the purpose of integration with social
networks, the messages found in the different queues of
RabbitMQ that correspond to the incoming campaigns and the
outgoing campaigns are used when scheduling a call. In this
scheme, the customer is within the Elastix environment,
specifically in the agent console, where a panel was developed
where all the requests associated with Twitter and the users
affiliated to the organization must appear.

4) Social Panel: Given the nature of the agent console to
provide customer service through telephone calls, in the
development of the social panel, different types of responses
were enabled that agents can use to solve the requests obtained
from the social network. In our case, the answers are handled
through direct messages to users, or a call is planned to them.
In the social panel, there is a button called “Enable Social
Media” to enable the process of consumption of messages in
RabbitMQ. When activated, a series of flows that are
explained below are triggered:

1. Instantiation of a RabbitMQ consumer.

2. Acquisition of messages from the queues subscribed by
the consumer.

3. Visualization of the information of the messages in the
agent console (Social Panel).

4. Change of the displayed labels in certain buttons of the
view.

5. Initialization of two timers for the attention of each
instance of an active agent console.

Figure 6 depicts the agent console with the Social Panel
activated.

API of the
Social Module

Complaints

DoubtsD

POST/messages

GET/user/search

Exchange_sm

Alternate_ex_sm

D

Congratulations

Default

Elastix

Agent Console

Consumer ECCP

. . .

Direct
Message

Human Agents

Using services of the
Processing Module to
send messages

DB of the
Call Center

Schedule
Call

BD RabbitMQ

RabbitMQ

Silex ‐ PHP

rk :: 0

rk :: 1
rk :: 2

rk :: 3

rk :: _any_. .
 .

25

Revista Venezolana de Computación - ReVeCom (ISSN: 2244-7040) - SVC
Vol. 5, No. 1, Junio 2018

Figure 6: Agent Console – Social Panel

The operation mode of the social panel is cyclical. When the
social mode is activated, a message is consumed from the
service queues of RabbitMQ. The agent console takes care of
it, and finally an intermediate time of action is given before the
next message is consumed.

VI. TESTS AND PARTICULAR SITUATIONS

Table I describes the set of tests associated with performance
and load, which were done to determine the impact of the
social module on the Elastix communications server. In this
way, we were looking to evaluate and determine if the
implementation of this module is feasible on a production
environment in terms of response times so that it can be used in
a real customer service. To carry out the tests, we used
PHPUnit, a well-known PHP framework for testing. With
PHPUnit, users can adjust the values according to the scenario
of each test, depending on the requirement to be evaluated.

Table I: Description of the Tests

ID Name Description

1
Processing
Direct
Messages

Determine the average time and the impact of
processing direct messages obtained in the PM
(Processing Module) from the Twitter API.

2
Submitting
Direct
Messages

Determine the average time and the behavior of
the application when generating a direct message
from the agent console.

3
Retrieving
Direct
Messages

Determine the average time and the impact when
retrieving the direct messages sent to the
associated account of the application.

VII. PERFORMANCE VALIDATION OF OUR PROPOSAL

A. Time for Processing Direct Messages

The purpose of this test is to determine the average time which
elapses between the acquisition of a message from the
processing module, until it is sent to its respective service
queue.

For this experiment, we generated 50 messages from the social
network to the different service queues: 20 associated with the
complaint queue, 20 for the doubt queue, and 10 for the
congratulation queue. Figure 7 depicts the results that we
obtained. The x-axis represents the experiment number (from 1
to 50), while the y-axis is the elapsed time in milliseconds. Our
experimental results show that the elapsed time is acceptable
for most of the experiments, that is, with a value under 2000
ms. The picks are due to high network traffic and load between

our testbed and the Twitter servers, which are related to the
Internet services.

Figure 7: Response Times when Processing Direct Messages

B. Time for Submitting Direct Messages

The goal of this test was to evaluate the effective time to get
and consume the web service of the processing module, which
is responsible for sending direct messages to Twitter users,
specifically those who have been answered from an instance of
the agent console.

For this experiment, we generated 50 responses from the agent
console to the 50 messages obtained from the service queues of
the previous experiment. Figure 8 shows the results that we
obtained. The x-axis represents the experiment number (from 1
to 50), while the y-axis is the response time in milliseconds.
Our empirical results show a response time that is acceptable
for most of the experiments, that is, with a value under 1500
ms. It is worth remembering that this time should be lower than
in the previous experiment, since the consumption was directly
against the processing module, and not against the service
queues.

Figure 8: Response Times when Submitting Direct Messages

C. Time for Retrieving Direct Messages

The objective of this test was to determine the average time
required by the Processing Module to retrieve all direct
messages from the social network, that is, the time that elapses
between a request sent by the Processing Module to Twitter to
obtain all direct messages associated with a specific user
account, and the reception of those. To do so, we generated 50

0

500

1000

1500

2000

2500

3000

3500

4000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

M
ill
is
ec
o
n
d
s

Experiment

0

500

1000

1500

2000

2500

3000

3500

4000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

M
ill
is
ec
o
n
d
s

Experiment

26

E. Gamess, F. Mora, D. Oliveros, D. Urribarri

requests from the Processing Module to the social network
(Twitter) to obtain the direct messages associated with the
@SocialMedia_App account.

Figure 9 shows the results that we obtained. The x-axis
represents the experiment number (from 1 to 50), while the y-
axis is the response time in milliseconds. Our empirical results
show a response time that is acceptable for most of the
experiments, that is, with a value under 1000 ms. It is worth
remembering that the value of this experiment will mainly
depend on the network infrastructure and load between our
testbed and the Twitter servers, which are bounded to the
Internet services.

Figure 9: Response Time when Retrieving all the Direct Messages

from a Specific Account in Twitter

VIII. CONCLUSIONS AND FUTURE WORK

The usage of new technologies has increased exponentially
with the rise of the Internet services. In the field of telephony,
the classical telephony system, with its own network, is
gradually replaced by VoIP, since it can use the existing data
network (resulting in cost cut), and it allows a high degree of
flexibility when developing custom applications.

Although unified communications systems and social networks
have been around for some time, their possible integration has
not been fully explored or exploited. In this research work, we
proposed a solution that combines these two technologies
together, to expand the communication channels offered to
clients, for the customer service of an organization, by adding
social networks as a new possible channel, to the range of tools
currently offered by state-of-the-art telephone systems.

We are very interested in pursuing our work in this field. Since
just a few researchers have been working in this direction,
there are many open possibilities to enhance the area, and we
are planning to explore the following ones:

 Transform the processing module into a backoffice, to
have a simple and configurable interface.

 Develop a social network module where configurations
can be made directly within Elastix, allowing the
administration of outbound campaigns through direct
messages or tweets to several customers using
configurable templates.

 Produce predesigned templates to be used by the agent
console when sending direct messages.

 Develop a statistics generator with a simple interface in
terms of attended requests and their response times.

 Add artificial intelligence in the processing of messages,
to train the system to identify negative words or phrases.

 Integrate some processes for data mining to know more
about the organization’s customers, with the goal of
customizing outgoing campaigns.

 Port our development to Issabel [36][37], a fork of Elastix,
maintained by the Internet community.

REFERENCES
[1] G. Barajas Puente, Elastix Unified Communications Server Cookbook,

Packt Publishing, March 2015.

[2] D. Duffett, Getting Started with Elastix: A Beginner’s Guide, P8Tech,
November 2013.

[3] N. Anaya, Fundamentos de Telefonía IP e Introducción a Asterisk/
Elastix, January 2013.

[4] P. Estrella, J. Bustos, and A. Muñoz, Implementando Call Center con
Elastix, 2013.

[5] VoIP Wiki. http://www.voip-info.org.

[6] A. Peicevic, Introduction to Asterisk: Learn How to Set Up your own
PBX Telephone System, 1st edition, CreateSpace Independent Publishing
Platform, January 2017.

[7] T. R. Lewis, High Availability Asterisk PBX: Proven Method, 1st
edition, CreateSpace Independent Publishing Platform, January 2016.

[8] D. Merel, B. Dempster, and D. Gomilion, Asterisk 1.6 - Build Feature-
rich Telephony Systems with Asterisk, Packt Publishing, 2009.

[9] V. Stanislovaitis, How to Start a VoIP Business: A Six-Stage Guide to
Becoming a VoIP Service Provider, 1st edition, Vilius Stanislovaitis,
February 2016.

[10] J. Joch, Openfire: Create your own XMPP Messaging Server Open
Source Software, CTS GMBH, January 2017.

[11] K. Thomas, Email Architecture, Design, and Implementations, 2nd
edition, CreateSpace Independent Publishing Platform, April 2017.

[12] R. Hildebrandt and P. Koetter, The Book of Postfix: State-of-the-Art
Message Transport, 1st edition, No Starch Press, March 2005.

[13] H. Alassouli, Creation of Postfix Mail Server Based on Virtual Users
and Domains, Independently published, June 2018.

[14] N. Simionovich, Asterisk Gateway Interface 1.4 and 1.6 Programming,
Packt Publishing, February 2009.

[15] B. Jackson, C. Clark, J. Long, and L. Chaffin, Asterisk Hacking,
Syngress, June 2007.

[16] iCode Academy, JSON for Beginners: Your Guide to Easily Learn
JSON in 7 Days, Independently published, August 2017.

[17] T. Marrs, JSON at Work: Practical Data Integration for the Web, 1st
edition, O’Reilly Media, July 2017.

[18] A. Lombardi, WebSocket: Lightweight Client-Server Communications,
1st edition, O’Reilly Media, September 2015.

[19] D. Coward, Java WebSocket Programming, 1st edition, McGraw-Hill
Education, September 2013.

[20] J. Del Moral, Redes Sociales ¿Moda o Nuevo Paradigma?, Madrid:
Asociación de Usuarios de Internet, 2005.

[21] P. Siriwardena, Advanced API Security: Securing APIs with OAuth 2.0,
OpenID Connect, JWS, and JWE, 1st edition, Apress, August 2014.

[22] A. Eloy Nascimento, OAuth 2.0 Cookbook: Protect your Web
Applications using Spring Security, Packt Publishing, October 2017.

[23] J. Richer and A. Sanso, OAuth 2 in Action, 1st edition, Manning
Publications, March 2017.

[24] S. Ludin and J. Garza, Learning HTTP/2: A Practical Guide for
Beginners, 1st edition, O’Reilly Media, June 2017.

[25] M. Miller, Sams Teach Yourself TweetDeck in 10 Minutes, 1st edition,
Sams Publishing, December 2010.

[26] H. Gaibor, Integración de Elastix con Gtalk. http://www.elastix.com/
integration-of-elastix-with-gtalk.

0

200

400

600

800

1000

1200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

M
ill
is
ec
o
n
d
s

Experiment

27

Revista Venezolana de Computación - ReVeCom (ISSN: 2244-7040) - SVC
Vol. 5, No. 1, Junio 2018

[27] S. Smith, Publicación en Twitter Mediante ASR. http://www.
10000horas.com/2011/12/08/un-agi-legendario-publicacion-en-twitter-
mediante-asr.

[28] J. Coalson. Free Lossless Audio Codec. https://xiph.org/flac.

[29] L. Rabiner and B. H. Juang. Fundamentals of Speech Recognition, 1st
edition, Prentice Hall, April 1993.

[30] SoX, Sound eXchange. http://sox.sourceforge.net.

[31] Ruby on Rails. http://rubyonrails.org.

[32] Silex: The PHP Micro-framework based on the Symfony Components,
https://silex.symfony.com.

[33] RabbitMQ. https://www.rabbitmq.com.

[34] G. Roy, RabbitMQ in Depth, 1st edition, Manning Publications,
September 2017.

[35] E. Ayanoglu, Y. Aytas, and D. Nahum, Mastering RabbitMQ, Packt
Publishing, January 2016.

[36] Issabel, https://www.issabel.org.

[37] C. Cabrera, Issabel: Una Alternativa de Código Abierto, https://
asteriskmx.org/issabel-una-alternativa-de-codigo-abierto.

28

E. Gamess, F. Mora, D. Oliveros, D. Urribarri

